CHAIN® Network
Performance Closure and
Verification User Guide

Silistix

(CHAIN®works 2.2)

(v1.0.2, 20-JAN-2009) wwwe.silistix.com
© 2008 — 2009 by Silistix UK Ltd.

Silistix

License
© 2008 Silistix, All Rights Reserved.

This document, including all software and software described in it, is furnished under the terms of
the CHAIN Documentation License Agreement (the "License™) and may only be used or copied in
accordance with the terms of the License. The information in this document is a work in progress,
developed by Silistix, and is furnished for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to Silistix. Silistix reserves all rights with respect to such
technology and related materials. Any use of the protected technology and related material beyond
the terms of the License without the prior written consent of Silistix is prohibited.

This document contains material that is confidential to Silistix and its licensors. The user should
assume that all materials contained and/or referenced in this document are confidential and
proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents). Disclosure or use of this document or any
material contained herein, other than as expressly permitted, is prohibited without the prior written
consent of Silistix or such other party that may grant permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and
unregistered trademarks of Silistix.

The copyright and trademarks owned by Silistix, whether registered or unregistered, may not be used
in connection with any product or service that is not owned, approved or distributed by Silistix, and
may not be used in any manner that is likely to cause customer confusion or that disparages Silistix.
Nothing contained in this document should be construed as granting by implication, estoppel, or
otherwise, any license or right to use any copyright without the express written consent of Silistix, its
licensors or a third party owner of any such trademark.

Disclaimer

Except as otherwise expressly provided, this specification and any other documentation is provided
by Silistix to users "as is" without warranty of any kind, express, implied or statutory, including but
not limited to any implied warranties of merchantability, fitness for a particular purpose and non-
infringement of third party rights.

Silistix shall not be liable for any direct, indirect, incidental, special or consequential damages of any
kind or nature whatsoever (including, without limitation, any damages arising from loss of use or lost
business, revenue, profits, data or goodwill) arising in connection with any infringement claims by
third parties or the specification, whether in an action in contract, tort, strict liability, negligence, or
any other theory, even if advised of the possibility of such damages.

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Table of Contents

PERFORMANCE CLOSURE USING SILISTIX NOC PERFORMANCE VALIDATION

OVEBIVIBW ...ttt ettt et e e e e e ettt e e e e e e e bbb e et et e e e e e e eneeeeee s 5
The Challenge WithOUt NPV ... 5
NPV Simplifies Performance Closure and Network Testingccccccvvvvveiiniiennnne 6

ACHIEVING PERFORMANCE CLOSURE USING SILISTIX NoC PERFORMANCE

VALIDATION (NPV)

NPV Performance Sign-Off PrOCESS.......uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieinieeeeenaeeeeeeeenene 9
e NN Y O o =T o] 10
L o e =T (UL = o= S = 11
CHAINarchiteCt Option SEMINGScooiiiiiiiiii e e e e e e e e e e e e eaean s 12
CSL Compiler Command LINEoouiiiiiiiiiiiiie et e e e e e 12
Run Simulation Script on Each NPV File ... 12
IMPIEMENTAtION PRASEuiiiiiiiiiiiiiie bbb aannaees 13
Freezing a NEtWOIK..........oooiiiiii e 14
CHAINarchiteCt Option SEMINGScoeoviieeiiiii e e e e e e e e e e e e e e aena s 14
CSL Compiler Command LINEooiiiiiiiiiiieii et e e e e e e e 14
Run Simulation Script on Each NPV File ... 14
Preparing for POSt-LayOut PRASE............cuiiiiiiiiiiiiice et 15
POSE LAYOUL PRASEuiiii ettt e e e e e e e e e e e eaaaas 16
Run Simulation Script on EACh NPV File...........oiiiiiiic et 16
What If NPV ReSUIS DO NOt PASS?.....ceiiiiiiiiiiiiiiiiie ettt 17
Generating NPV Files in CHAINArchiteCt ... 17
Before First Placement EStimator (FPE).........coouuiiiiiiiieeeee e 18
After First Placement Estimator (FPE)............ccccc 18
FIlES CrEALEM ..o e e e e e e s e e et e e e e e e e s 18
SIMUIALOT SETUP ..o 19
SUPPOIEA SIMUIALOTSeeeeiiiiiiiiee et e e et e e e e e e e e e e e e e e e anes 19
$SILISTIX_HOME Environment Variablecccoveiiiiiiii i 19
EXECULING @N NPV TEST ... e e e e e e e e e aaaaas 20
NPV-Related CSL Compiler OPtioNScovuiiiiiiii e 21
Example NPV StMUIUS Fil@......ou e 22
Example Report File OUTPUL........uuuiiiiiiiiiiiiiiiiiiiiii e 23
ST U] 0] 0= YT 23
L2 T6{=IN =T oL ¢ PP 24

(v1.0.2, 20-JAN-2009) www.silistix.com

Silistix

NPV TECHNICAL DETAILS

Basics of Performance ClOSUIEoooiiiiiiiiie e e 25
D= 1= W o o o (U Tt 1o o [TP PPP PP 25
(D= = W O 0] £ 1 o1 o] 1o o IR 25
D= 1= B I = 1 1= 0 01K (o o P 26

CSL Compiler Traffic GeNeration ... 26
SHIUCIUIE OF @ IMOUE .. e e e et e e e e e e e e earaaaa s 27
(1ET = (To] o I @ o 1H o | PSPPSR 28

IMPOrtanCe Of CSL ACCUTACY ...vvuniiiiiiiiieeieiie et e e e e e e e e e s 29
MOAES .. 29
COoNNECHION REQUITEIMEINTS ...ttt e e e e et e e e e e e s bbb e e e e e e e e e e e 29
(D= 1= IYAATo L1 o P POT PPN UPPPPPPPRIR: 29
Burst Length and AdAreSSIiNgoovviiiiiiiiiiii e 29
(@015 =T aTo [T To T I = Vg TST= T 1o 1S 29
L 111221 o o I N T 1= o [PP 30
Role of the First Placement EStimator (FPE) ... 30

GLOSSARY
ALY 101 I 153 (0 1 YU 32
=0 | o = T S 32

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Performance Closure using
Silistix NoC Performance Validation (NPV)

Overview

The Silistix NoC Performance Validation (NPV) feature augments and simplifies the existing EDA
flow for System on Chip (SoC) design. Essentially, NPV provides an easier path to performance
closure and sign-off compared to traditional methods. Performance closure is the process of
verifying, at various points during the chip development flow, that the requirements specified in a
CSL design are met, eventually leading to performance signoff prior to IC tape-out.

NPV generates worst case data traffic patterns that stress the Silistix network in order to guarantee
that the design meets the specified bandwidth and latency requirements. Perhaps the easiest way to
understand the benefits of NoC Performance Validation (NPV) is to compare the challenges when
verifying an on-chip network with and without NPV.

The Challenge without NPV

First, consider the example design shown in Figure 1 that uses traditional verification techniques. In
such an environment, the system designer or test engineer must laboriously create a testbench or test
harness that ...

B drives a transaction over the network using the initiator’s native protocol,
monitors the transaction at the target,

correctly responds to the transaction using the target’s native protocol,
verifies that both the initiator and target have sent or received the correct data,

drives network traffic with worst-case patterns, and

checks that the network meets the application’s bandwidth and latency requirements.

(v1.0.2, 20-JAN-2009) www.silistix.com
© 2008 — 2009 by Silistix UK Ltd.

Silistix

Figure 1. Traditional Testbench Approach

Drive

transactions here

Initiator Endpoint

Custom Logic or
3"party
Intellectual
Property (IP) T .
arget Endpoint
Block 9 nepe
"""""""""""""" Custom Logic or
3"-party
Intellectual
Property (IP)
H Block
Verify that the transaction Monitor and
successfully completed respond to
and met required transactions here

bandwidth and latency

Such a testbench quickly becomes complex; a major design task by itself. Furthermore, the entire
system design must be completed, including the IP blocks at both ends of the network, before
validating the network. The testbench must also exercise both the initiator and target endpoints in
their native protocol in order to generate worst-case network traffic. Finally, the testbench must
include a means to check for successful transactions and check that the application’s bandwidth and
latency requirements are satisfied.

NPV Simplifies Performance Closure and Network Testing

Compare the traditional approach to the simpler, more automated NoC Performance Validation
(NPV) approach shown in Figure 2. NPV automatically generates a test environment to verify the
performance of a Silistix Network on Chip (NoC). The automated NPV test harness replaces the
user-defined endpoints on the network with pre-built test transactors. The transactors connect to the
NPV controller that automatically generates real-world network traffic. The controller also monitors
each transaction and produces a report that shows the resulting bandwidth and latency performance
for each connection. The NPV environment aids performance closure and augments the
performance analysis within CHAINarchitect. Furthermore, NPV eliminates the need to have all
endpoints in place before validating network performance.

The NPV testbench generates and consumes network traffic that is representative of the actual
system when the system is in a particular mode of operation. CHAINarchitect or the CSL Compiler
generates traffic files that are read by the NPV test harness. The NPV harness converts the test data
into signals that stimulate data flow between adapters, mimicking transactions by the actual endpoint
hardware and software.

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Figure 2: Automated NoC Performance Validation (NPV) Environment

Protocol-specific
Transactor

Protocol-specific
Transactor

— NPV Controller g

NPV provides a predictable view of the NoC during the entire development process. Network
performance can be re-verified at each step of the development process, increasing the accuracy of
the final result. This predictability increases confidence in the implemented results for the system.

(v1.0.2, 20-JAN-2009) www.silistix.com

r ®
CHAIN Network Performance Closure and Verification User Guide Silistix

[THIS PAGE INTENTIONALLY LEFT BLANK]

8 www.silistix.com (v1.0.2, 20-JAN-2009)

y ®

Stlhistix

Achieving Performance Closure using
Silistix NoC Performance Validation (NPV)

NPV Performance Sign-Off Process

Using NPV, the performance signoff process includes multiple steps, as shown in Figure 3. Before
beginning the NPV validation process, check the performance requirements specified in the CSL file
using CHAINarchitect or CSL Compiler. This pre-NPV check uses static modeling and simple wire
delay approximations to check performance. Design iterations at this point are fast and easy.

Figure 3: Silistix NPV Performance Closure Process

Aq_) Performance Signoff

O

c

8 Uses physical wire delay and position information
= Iterations more difficult, take longer

c

o)

)

Physical Design Phase)

FPE improves wire delay approximations
Optimizations have big impact

Iterations remain relatively fast

Requires more information about the overall design

Simple approximation of wire delays
Optimizations have big impact

Iterations are relatively fast

Fine tuning the approximations makes little sense

Architecture Phase)

Check that CSL design meets basic requirements
Simple approximation of wire delays
Optimizations have big impact

Iterations are fast and easy

A
W\

Pre-NPV Check

Effort
>

The first step in the NPV validation process is called the Architecture Phase and provides a first level
of confidence before progressing with the design. Here, the CSL design is checked against the
specified performance requirements using a cycle-accurate simulation model, but using a simple

approximation of wire delays.

(v1.0.2, 20-JAN-2009) www.silistix.com
© 2008 — 2009 by Silistix UK Ltd.

Silistix

The Implementation Phase is the second phase of the performance signoff process. This phase
integrates more-detailed physical design parameters into the simulation model, resulting in a much
higher degree of confidence before entering the physical design phase of the overall chip design.
The physical information leverages the First Placement Estimator (FPE) tool within the Silistix
CHAINarchitect software.

After successfully completing the Implementation Phase, there is sufficient confidence to begin the
lengthy synthesis, verification and chip assembly phases of the design. Changes after this point
become significantly more difficult and time consuming.

The third and final step in the NPV performance signoff process is the Post Layout Phase. This phase
requires a fully laid out chip design. The extracted post-layout information ultimately provides the
confidence that the resulting physical silicon meets the specified bandwidth and latency
requirements.

Pre-NPV Check

Before starting NPV verification, ensure that the CSL file meets the specified performance
requirements for the application, as shown in Figure 4. From within CHAINarchitect, run the Check
operation and verify that no errors or performance-related warnings are reported. For more
information using CHAINarchitect, please refer to the following document.

Building and Analyzing On-Chip Networks using CHAINarchitect
(chainarchitect-user-guide.pdf)

Figure 4. Pre-NPV Check

Connection Specification
Language (CSL) File

system my_system

}

Silistix CSL
CHAINarchitect |Compiler
Trade-off ¢
Analysis
and Check CSL
Performance
Tuning

A

Report File

Passed?

@PV Architecture Pha39

To process the design with CSL Compiler, use the following command line options.
cslc <csi_source_file>.cs]

www.silistix.com (v1.0.2, 20-JAN-2009)

chainarchitect-user-guide.pdf

Silistix

The CHAINarchitect Check operation provides a fast and relatively accurate performance check
mple approximation of wire delay. If the Check operation is
successful, proceed to NPV validation, starting with the Architecture Phase.

using a static timing model and a si

Architecture Phase

Figure 5 shows the Verilog-based NPV flow during the architectural phase.
settings, CHAINarchitect or CSL Compiler generates the following output files.

Using the proper

B Behavioral Verilog model of the Silistix network. A SystemC model is a separate option.

B Simulator-specific script file, simulate.sh

B Various . npv files, one per mode defined in the CSL source file. If no modes are specified in
the CSL design, then only default.npv is created.

Figure 5: Verilog-based NPV Verification: Architecture Phase

Connection Specification
Language (CSL) File

S

}

ystem my_system

--generate-verilog
--generate-npv-traffic

CHAINarchitect |Compiler

Silistix CSL

Trade-off *
Analysis
Perféirrr]r?ance Gen-erate
Tuning Verilog
A
v‘ \/ vi
Simulation | | Behavioral NPV
Script Verilog Traffic

i

3

Execute NPV Simulation

Script

Yes

(NPV Im

plementation Phase)

To generate NPV files, include the --generate-npv-traffic CSL Compiler option. By
default, the generated NPV files appear in the <system_name>/npv subdirectory. CSL
Compiler generates one NPV file per mode statement declared in the source CSL file.

(v1.0.2, 20-JAN-2009)

www.silistix.com

11

Silistix

CHAINarchitect Option Settings

As shown in Figure 10 on page 18, set the following options in the Generate Verilog section.
--generate-report --generate-npv-traffic --generate-verilog

CSL Compiler Command Line

To process the design with CSL Compiler, use the following command line options.

cslc <csl_source_file>.cs1 --generate-report --generate-npv-traffic \
--generate-verilog

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an
NPV Test” on page 20 for more information.

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements. See “Example Report File Output” on page 23 for more
information.

If all NPV simulations pass, continue to the Implementation Phase.

If an NPV simulation does not pass, then see Option 1 under “What If NPV Results Do Not Pass?”
on page 17 for more information.

12

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Implementation Phase

The Implementation Phase, shown in Figure 6, includes the placement-related affects on timing. The
First Placement Estimator (FPE) tool uses pre-placement information to provide more realistic wire
delay times. Because wire delay may have significant impacts on the actual latency and bandwidth,
running NPV on a network after performing FPE is a mandatory step to guaranteed performance
closure.

Figure 6: Verilog-based NPV Verification: Implementation Phase
Connection Specification
Language (CSL) File
--generate-verilo
?’Stem my_system - ——generate-npv—trgfﬁc

--clean-fpe-database
--perform-fpe
--generate-scsl

Once network frozen
Silistix CSL --define:INCLUDE_SCSL

; ; FPE
CHAINarchitect |Compiler Ty
Trade-off *

Analysis -
and Generate N
Performance

Tuning Verilog One NPV file per ;

mode statement !
A

T~ /’
NPV DEF
Traffic Layout W

Simulation | | Structural
Verilog

Script
Execute NPV Simulation
Script

Yes

Logic Synthesis j#——

Y

Place and Route j¢———

Back-Annotation
Extraction

NPV Post-Layout Phasa

Exfracted
DEF
Layou

(v1.0.2, 20-JAN-2009) www.silistix.com

Silistix

Freezing a Network

After creating an acceptable initial physical placement that meets all the specified requirements,
freeze the network so that it can be annotated and re-verified against those requirements later. To
freeze the network, perform the following steps.

1. Generate a structural CSL file by including the --generate-scs1 compiler option.
2. Inthe original CSL source file, add the following lines just inside the closing brace of the system
declaration to reference the structural CSL file, as shown in Figure 7.

Figure 7: Method to Include Structural CSL File

#if defined (INCLUDE_SCSL)

#include '"<system_name>/scsl/<scs1 file name>.cs1"
#endif

3. To use the frozen structural CSL file, add the following command line option.
cslc <filename> <options> --define:INCLUDE_SCSL

CHAINarchitect Option Settings

As shown in Figure 10 on page 18, set the following options CSL Compilers.
FPE section

--generate-report --clean-fpe-database --perform-fpe \
--generate-scsl: <structural_csl_file>.csl

Generate Verilog section
--generate-report —T?enerate—r_\pv—trafﬁ'c \
--generate-verilog --define:INCLUDE_SCSL

CSL Compiler Command Line

To process the design with CSL Compiler from the command line, use the following options.
First Placement Estimation (FPE)

cslc <csl_source_file>.cs1 --generate-report --clean-fpe-database \
--perform-fpe --generate-scsl:<structural_csi_file>.cs]

Generate NPV

cslc <csl_source_file>.cs1 --generate-report --generate-npv-traffic \
--generate-verilog --define:INCLUDE_SCSL

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an
NPV Test” on page 20 for more information.

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements. See “Example Report File Output” on page 23 for more
information.

If all NPV simulations pass, continue to the Preparing for Post-Layout Phase.

14 www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Preparing for Post-Layout Phase

Any placement information generated by FPE is saved in a DEF file. This information is useful for

Preparing for Post-Layout Phase. The resulting *.def file is saved under the constraints
subdirectory.

Use the DEF file during logic synthesis and placement and routing. The ultimate result is a post-
layout DEF file. CHAINworks provides a script for your EDA flow to extract DEF files from your
laid out design that can be read directly into CSL Compiler for the generation of timing annotated
networks for NPV performance closure and signoff.

Continue to “Post Layout Phase” on page 16.

(v1.0.2, 20-JAN-2009) www.silistix.com

15

Silistix

Post Layout Phase

Although FPE generally provides good estimates of wire lengths, the actual location of some
network components likely changed during final layout.
process, extract actual placement and wire delay information from the final design and feed it back
through the system, as shown in Figure 8. This back-annotation step produces highly accurate
timing information to guarantee final performance closure.

To complete the performance sign-off

Figure 8: Verilog-based NPV Verification: Post-Layout Sign-off
Connection Specification
equirements,
ude structural CSL
E_S

Langua?e (CsL)

Inc

Silistix

CHAINarchitect |Compiler

CSL

Trade-off *
Analysis
Perf(?r%jance Gen_erate
Tuning Verilog
A

ap

Simulation
Script

N

\

Structural
Verilog

Execute NPV Simulation

Script

Yes

Performance Sign-off
Achieved!

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an
NPV Test” on page 20 for more information.

--generate-verilog
--generate-npv-traffic

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements.

information.

See “Example Report File Output” on page 23 for more

16

www.silistix.com

(v1.0.2, 20-JAN-2009)

Silistix

If all NPV simulations pass, then the design achieved performance closure. Proceed to silicon
fabrication.

What If NPV Results Do Not Pass?

If the application passes all NPV validation steps but fails to meet the original design requirement
during the Post-Layout Phase, there are two options.

1. Modify the bandwidth or latency requirement(s) in the CSL source file.

Examine the cases of negative slack described in the report file. Determine whether the design
can tolerate slackening the bandwidth or latency requirements described in the CSL source file.
The reported negative slack may be negligible or the original requirement might be over-
specified or unrealistic.

2. Modify structural CSL, re-generate Verilog, re-synthesize, re-layout, and iterate again

The other option is to modify the structural CSL, which is more complex. This also requires that
the design be re-processed back through enire the design flow, which is a time consuming
process.

Generating NPV Files in CHAINarchitect

To generate NPV files, include the --generate-npv-traffic CSL Compiler option for
Generate Verilog, as described below.

The Silistix CSL Compiler underlies all CHAINarchitect operations. To set specific options for the
CSL Compiler software, follow the steps outlined after Figure 9. See “NPV-Related CSL Compiler
Options” on page 21 for a list of all NPV options.

Figure 9: Right-click on CSL File, Select Properties

== Compare ..
= lad csl_example R '
CHAINarchitect L4

&5 graphml

Properties Alt+Enter

@ As shown in Figure 9, expand the project tree to reveal the CSL file. Right-click on the CSL
file name.

@ Select Properties from the resulting pop-up menu.

(v1.0.2, 20-JAN-2009) www.silistix.com 17

Silistix

Figure 10: Set Generate Verilog Options

Properties for csl_example.csl

lt_ype filter text

Resource

Cslc Compiler I

slc Compiler

Path: /csl_project/src/

Check Errors: |--generate-rep0r‘t

©

€

View Graph: |--generate-rep0r‘t --generate-graphml

Generate Verilog: |--generate-rep0rt --generate-verilog --generate.

Generate System C: |--generate-report --generate-systemC[:vendor]

FPE |--generate-rep0r‘t --clean-fpe-database --fpe-w:

Restore Defaults | Apply |

Cancel

As shown in Figure 10, click Cslc Compiler to reveal the available option settings.

Modify the Generate Verilog options using one of the following two option settings. Be
sure to include the --generate-npv-traffic option.

W Before First Placement Estimator (FPE)
B After First Placement Estimator (FPE)
@ When finished, click OK to save the new option settings.

Before First Placement Estimator (FPE)

Use these options without generating a First Placement Estimation.

--generate-verilog --generate-npv-traffic

After First Placement Estimator (FPE)

Use these options to generate a First Placement Estimation. The output design includes any
pipelatch components required to guarantee bandwidth across the chip.

--clean-fpe-database [other FPE options] --perform-fpe --generate-verilog \
--generate-npv-traffic

Files Created

After generating Verilog, CHAINarchitect or the CSL Compiler generates a Simulation Shell Script

and one or more NPV Files. The resulting files appear in the CHAINarchitect Project Explorer, as
shown in Figure 11.

Simulation Shell Script

The simulation shell script, simulate. sh, appears under the verilog project sub-directory.

18 www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Figure 11: NPV File Directory
I_?:, Project Explor & ~ = 8O

==

= 1z csl_project
¥ & my_system
P 5% constraints
b & ow_work
&% npv
B high_speed npv

B low_power npv

B reset.npv
P 55 rep
5 synthesis
P [validation
b (& verilog
A simulate.sh
¥ (&% SrC

B9 csl_example.csl

NPV Files

CHAINarchitect or the CSL Compiler creates one NPV file for each mode statement in the CSL
source file. If no mode statements are used, then only one file is generated, called default.npv.
The NPV files appear under the npv project sub-directory.

Simulator Setup

The Simulation Shell Script requires a supported Supported Simulator and a $SILISTIX_HOME
Environment Variable.

Supported Simulators

The Silistix NPV simulation script supports the following simulators. Add the appropriate option
settings shown in Table 1 to the simulator-specific script command line.

Mentor Graphics® ModelSim® or Questa® (vsim)
Synopsys® VCS®
Cadence® NC-Verilog®

SystemC Simulator

$SILISTIX_HOME Environment Variable

The simulator shell script requires that the $SILISTIX_HOME variable be set, which is also
required to invoke the CHAINarchitect or CSL Compiler software.

(v1.0.2, 20-JAN-2009) www.silistix.com

Silistix

Executing an NPV Test

Run the Simulation Shell Script from a console window. If more than one mode is specified in the
CSL file, run the shell script for each * . npv file.

Run the script from the within the CSL system director. By default, the script output appears on the
standard output. Generally, redirect the log file output to a specified output file. An example
command line appears below for the default mode.

cd my_system

./simulate.sh —-batch --vectors npv/default.npv --Togfile default.log

The simulator script supports the options listed in Table 1.

Table 1: Simulation Script Options

Option Description INIES
L. . -struct
--structural-hardmacros | Use structural hardmacro models in simulations | _c¢ructural
- Use behavioral hardmacro models in -behav
--behavioral-hardmacros . . .
simulations --behavioral
--logfile <filename> Output simulator transcript to filename -1
—_patch Run simulator on the command line and exiton | __
completion
--gui Run the simulator with graphical user interface -gui
--verbose Run the simulator in verbose mode
--quiet Run the simulator in quiet mode
—_vectors <filenames> Use the vectors from filename for the simulation
(multiple -vectors <filename> can be used)
--all-vectors Use all vectors found for the current project
--ncverilog Use CadenceNC-Verilog simulator i
; ; -vsim
__vsim Use Mentor Graphics ModelSim or Questa __modelsim
simulator __questas'im
--vCs Use Synopsys VCS simulator -VvCs
--work Set ModelSim work directories
--systemc Use SystemC simulator
; ; _ -sdf
__post_synthesis Use post synthesis netlists and back-annotated | ~>
SDF backannotate
Pass arguments to the compile phase of the _car
--compile-arguments simulation. e.g. --cargs "<option1> <option2>..." _E?a,g,ss
typically things like +define+
Pass commands to simulation when it is run. _raras
--run-arguments e.g. --rargs "<option1> <option2>..." typically - ra%gs
things like -gui
Pass commands to simulation once it is loaded.
--run-commands e.g. --rcom "<optionl> <option2>..." typically tcl | -rcom
commands such as run -a
--help Display this help text :Ee1 b

20

www.silistix.com

(v1.0.2, 20-JAN-2009)

Silistix

NPV-Related CSL Compiler Options

Table 2 lists the NPV-related options for CSL Compiler.

Table 2: CSL Compiler Options for NPV

Option Description . Alias
--define: INCLUDE_SCSL Include the referenced structure CSL file
--generate-npv-traffic[:<dir>] Generate NPV traffic files. -npv
--npv-threshold:<tolerance> NPV bandwidth tolerance. -npvt
. -] NPV minimum traffic iteration count for _ .

npv-iterations:<n> initiators. Default is 10. npvi

fast-npv-traffic Generate NPV traffic for faster (less accurate)
simulation
--distribute-npv-traffic Distribute NPV traffic
--randomize-npv-traffic Randomly stagger NPV traffic
--perform-fpe[: <dbpath>] Perform First Placement Estimation (FPE) -fpe
--clean-fpe-database Clean FPE Database -cfpe
--fpe-center-gateways Center Network Gateways within Soft IP Block | -fpcgw
——fpe-weights :wl_w2_w3_w4 Set FPE Weights for the various inter-block —wt:
connections

——fpe-sub-block-size:<size> ggltjsmthe FPE Sub-block Size, in pm. Defaultis | _ .
--fpe-wrap-edges Wrap Soft IP Block Edges -wse
--no-pipelatch-insertion No Pipelatch Insertion -nop]
--generate-scs1[:filename] Generate Structural CSL File -gf
--generate-verilog Generate DEF File -gv

(v1.0.2, 20-JAN-2009)

www.silistix.com

21

Silistix

Example NPV Stimulus File

Figure 12 shows an example NPV stimulus file generated automatically by CHAINarchitect or CSL
Compiler. A separate NPV file is generated for every mode statement in the CSL source file, plus a
default.npv for any connections that are not declared within a mode statement.

Figure 12: Example NPV Stimulus File

CHAINworks system-level test pattern file

Cslc version Aug 22 2008:15:12:49

Run on Tue Sep 23 17:16:34 2008

command 1line = "src/silistix_training_demo_master.cs1l -or -gv -bm -npv -dq
system: silistix_training_demo mode: default

Initiator IDs
0 cpu_block/cpu/i_port
1 mpeg_block/mpeg/i_port
2 dma_block/dma/i_port
Target IDs
0 host_interface/eth/t_port
1 dram_block/dram/t_port

%%%%%%%%%%%%%%%

@initiator cpu_i_port 0 AXI 32 32
@initiator mpeg_i_port 1 AXI 32 32
@initiator dma_i_port 2 AXI 32 32

@stimuli

#
Setup Instrumentation
#

dma_bTlock/dma/i_port <= host_interface/eth/t_port
%2 check_read_bandwidth 0 104857600

dma_block/dma/i_port => host_interface/eth/t_port
%2 check_write_bandwidth 0 104857600

cpu_bTlock/cpu/i_port <= dram_block/dram/t_port

%0 check_roundtrip_read_latency 1 140e-9

%0 check_read_bandwidth 1 209715200

dma_block/dma/i_port <= dram_block/dram/t_port

%2 check_read_bandwidth 1 209715200

cpu_block/cpu/i_port => dram_block/dram/t_port

%0 check_write_bandwidth 1 209715200

mpeg_block/mpeg/i_port => dram_block/dram/t_port
%1 check_write_bandwidth 1 209715200

dma_block/dma/i_port => dram_block/dram/t_port

%2 check_write_bandwidth 1 209715200

mpeg_block/mpeg/i_port <= dram_block/dram/t_port
%1 check_read_bandwidth 1 838860800

#

Initiator: cpu_block/cpu/i_port
#

%0 start_bandwidth_window
%0 repeat_ b1ock 39

%0 read 1 INCR 8 0 0x100 32 0x8172de33 60e-9 0 0 # target: dram_block/dram/t_port
%0 read 1 INCR 8 1 0x104 32 0xed860653 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 2 0x108 32 0xb3262fdl 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 3 0x10c 32 0x59b7f78f 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 4 0x110 32 0x26dc250a 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 5 0x114 32 0x98f2328a 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 6 0x118 32 0x4c5b962e 0e-9 0 O # target: dram_block/dram/t_port
%0 read 1 INCR 8 7 Ox1lc 32 0x33155db4 0e-9 0 O # target: dram_block/dram/t_port
%0 write 1 INCR 8 0 0x100 32 0x873ce775 0e-9 0 0 # target: dram_block/dram/t_port
%0 write 1 INCR 8 1 0x104 32 Oxc2edc876 0e-9 0 0 # target: dram_block/dram/t_port
%0 write 1 INCR 8 2 0x108 32 0x13f7476d 0e-9 0 O # target: dram_block/dram/t_port
%0 write 1 INCR 8 3 0x10c 32 Oxae3efcd4 0e-9 0 0 # target: dram_block/dram/t_port
%0 write 1 INCR 8 4 0x110 32 Ox1lb2ldeb3 0e-9 0 O # target: dram_block/dram/t_port
%0 write 1 INCR 8 5 0x114 32 0x14103d60 0e-9 0 O # target: dram_block/dram/t_port
%0 write 1 INCR 8 6 0x118 32 Ox6cd38e9f 0e-9 0 O # target: dram_block/dram/t_port
%0 write 1 INCR 8 7 Ox1llc 32 Oxe9eb5470 60e-9 0 O # target: dram_block/dram/t_port

22

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

%0 wait_until 1221e-9
?0 end_block

#
Report Results
#

%0 report_roundtrip_read_Tlatency 1
%0 report_read_bandwidth 1

%0 report_write_bandwidth 1

%1 report_write_bandwidth 1

%1 report_read_bandwidth 1

%2 report_read_bandwidth O

%2 report_write_bandwidth 0

%2 report_read_bandwidth 1

%2 report_write_bandwidth 1

Example Report File Output

Executing an NPV file creates a large report file. The end of the report file includes a Summary of
results of the NPV testing. The details of the specific test patterns are listed in detail in the Trace
Report.

Summary

Figure 13 shows an example summary section from an output file generated by the simulation script.
The output shown here is formatted to fit the page and is slightly different than the actual format as it
appears in the file.

The summary report lists the required and achieved latency or bandwidth values from every initiator
to every connected target. Results are summarized separately for every initiator and then, for each
initiator, further summarized by each connected target. For connections with specific requirements,
the report file also shows the available slack in the specification.

B A positive slack indicates that the connection meets the requirement.

B A negative slack indicates that the connection misses the requirement. Further analysis and
possible system modifications are required for any connection with negative slack.

Figure 13: Example Report File Summary

NPV Summary Report

Results cpu_i_port
connection to: dram_t_port: fwd transactions= 600; rsp transactions=400
Read Tatency cpu_i_port => dram_t_port:

(unconstrained, achieved min 145.00ns, max 190.00ns, average 149.00ns)
write Tatency cpu_i_port => dram_t_port:

(unconstrained, achieved min 87.00ns, max 112.00ns, average 90.00ns
Read bandwidth cpu_i_port <= dram_t_port:

(required 10.0MBps, achieved 10.5MBps, slack 0.53471MBps)
write bandwidth cpu_i_port => dram_t_port:

(required 10.0MBps, achieved 8.9MBps, slack -1.13583MBps)

HFOH W HHHHFHHRHR

(v1.0.2, 20-JAN-2009) www.silistix.com

23

Silistix

Trace Report

The trace report provides a detailed accounting of each action and transaction that occurs on the
network.

Example Output

Figure 14 provides an example snippet from the trace report. All actions listed in chronological
order, are time stamped, with all relevant transfer details (Transaction Type, address, data, size, ID),
and where possible, referenced back to a line number in the NPV stimulus file.

Figure 14: Example Trace Report Snippet

Initiator Target
131.00 wc———> (Tine=82): awaddr=0x00000100

aws1ze=0x2 awid=0 (1nitiator 0)
Transaction type

142.70 cpu_i_port --->d | dram_t_port : wdata=0x5e100ba2 wstrb=0b1111
wlast=0 wid= (initiator 0's wid=0)
Time stamp
1 277.87) cpu_i_port <---wr dram_t_port : bresp=0 bid=0

Transaction Type

Each transaction in the NPV trace file includes a transaction code, shown in Table 3, indicating the
type of transaction and the direction of data flow.

Table 3: NVP Trace Transaction Type Codes

Code Description
Commands
rc---> Initiator sends a read command
I wc—--—> Initiator sends a write command |
| --->rc Target accepts read command |
-——>WC Target accepts write command
Write Data
d---> Initiator sends write data
--->d Target receives write data
Responses
<---rr Target sends read response
| <---ww Target sends write response |
I rr<--- Initiator receives read response |
| wr<--- Initiator receives write response |

24 www.silistix.com (v1.0.2, 20-JAN-2009)

Y 4 ®
Silistix
NPV Technical Details

Basics of Performance Closure

The NPV test environment helps achieve performance closure across all modes of operation within a
system. The environment generates representative worst case traffic and ensures that the
transactions meet the bandwidth and latency requirements of the system under actual operating
conditions.

While SystemC modeling and other high-level mechanisms for modeling system level performance
are useful, NPV stresses the performance corner cases by generating worst case traffic and proving
that the requirements are met.

Three conditions determine whether an on-chip network meets the bandwidth and latency
requirements specified by in a CSL source file.

1. Data Production,
2. Data Consumption, and
3. Data Transmission.

In other words, the NPV performance closure process validates that the system can produce,
consume, and tramsit data at the required rates to guarantee full system operation?

Data Production

Data production occurs at both the initiator and target end of the network. Initiators on the Silistix
network produce transactions that carry data during write operations or that issue commands and
addresses to a target to which the target must respond. A target produces data during read operations
or by responding to a request. In either case, the rate at which an initiator or target produces daa
depends upon the initiator’s operating frequency, and the data width of the transfer. For burst write
operations, another aspect of data production is the number of beats (cycles of data width bits)
necessary to transmit the entire burst.

Similarly, a target produces data during a read operation or during some response operations back to
the initiator.

NPV uses the read_response and write_response statement declared in the CSL source
file to determine how quickly an initiator or target can produce data once a transaction is received.

Data Consumption

Data consumption, like data production, happens at both the initiator and target end of the network.
During a read operation, the initiator consumes the data produced by the target. During a write
operation, the target consumes the data produced by the initiator. Similar to data production, data
consumption is dictated by the initiator’s or target’s operating frequency, its data width, and burst
length.

NPV uses the read_response and write_response CSL attributes to determine how quickly
an initiator or target should respond after the data of a transaction is consumed. Figure 15 depicts

(v1.0.2, 20-JAN-2009) www.silistix.com 25
© 2008 — 2009 by Silistix UK Ltd.

Silistix

how the read_response time of both the initiator and target are reflected in how data is produced
and consumed.

Figure 15: Read and Write Response Delays

Initiator Initiator
read_response read_response
delay delay
A A
4 A r A
Target TO <Response Read A> <Response Read B>
Target
read_response
delay

When a burst transfer occurs, the response times are applied after the last beat of the burst.

Note that the read_response and write_response times of an initiator or target must be
expressed as a multiple of the period (1/frequency) of the endpoint in nanoseconds.

Data Transmission

Data transmission is the most difficult portion of traffic generation as it relates directly to the amount
of traffic being transmitted simultaneously throughout the network during a given mode of
operation. CSL Compiler uses a static model for provisioning networks and to estimate the
probability of network contention. The primary goal of the NPV validation process is to demonstrate
that the network correctly handles the worst case contention while maintaining the specified
bandwidth and latency requirements.

Contention occurs on the Silistix network under the following conditions

B A Silistix merge or switch network component is currently processing a transaction when
another transaction arrives.

B More transactions arrive at an initiator or target than it has storage to accommodate, which
causes “back pressure” in the system.

Complex SoC designs sometimes handle these contention issues using expensive quality of service
schemes. By comparison, CHAINworks statically generates a properly-provisioned network that
handles all combinations of traffic. The NPV process then proves that the resulting network meets or
exceeds the bandwidth and latency requirements specified by the user. The end result is a fast, small
network proven in advance to meet the specified system communication requirements.

CSL Compiler Traffic Generation

The CSL Compiler generates network traffic based on operating modes declared in the CSL file and
the connections defined within each mode. Each mode statement represents a distinct, exclusive
operating mode. This model further assumes that all transactions between initiators and targets
happen exclusively within the mode; there is no interaction between initiators and targets operating
in another mode. Therefore, CSL Compiler simply generates traffic data that meets the requirements
specified for each initiator/target pair within a given operating mode.

26

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

A fundamental concept of NPV and the CSL Compiler static provisioning model is that each mode
operates independently, for an unspecified period of time. Assume for example that a system has
three exclusive operating modes: reset, low power mode, and high-speed data streaming. While
initiators or targets operate in one particular mode, it is unlikely that they simultaneously operate in
another mode. The duration of a mode for NPV validation has no relationship to the amount of time
that the real application will operate in that mode.

CSL Compiler generates NPV stimulus for a mode using its own calculated time window. CSL
Compiler generates sufficient network traffic to show that the CSL Compiler static provisioning and
contention models meet the specified bandwidth and latency requirements described in the CSL
source file.

Structure of a Mode

Within NPV, a mode is represented by a single NPV traffic file with the extension .npv. All CSL
connections that are not defined within a mode are validated with the default.npv file.
Consequently, every CSL file results in at least one NPV traffic file. Any user specified modes result
in a separated NPV traffic file with the mode’s name and the . npv extension.

Conceptually, traffic patterns within a mode are separated into initiator blocks, as shown in Figure
12. Each initiator block describes a series of read and write transaction requests from the initiator to
a target. Each transaction results in a burst of traffic. The length of the burst is specified in the CSL
file.

In Figure 16, initiators are named 10, 11, 12, etc., and targets are named TO, T1, T2, etc. Each of the
horizontal rectangles represents an initiator block and the transactions that it generates during the
mode. Both write and read transactions are interleaved proportionally based on their percentage of
the total traffic they represent for the initiator with the mode.

Figure 16: Three Initiator Blocks within a Mode

t=0 t=n
Initiator 10 < Write to TO >< Read from T1 >
Initiator 11 < Write to TO >< Read from TO >< Read from T1 >
Initiator 12 < Read from T1 >< Read from TO >< Read from T1 >< Read from TO >

In reality, however, each read and write transaction consists of one or more beats of data. A beat of
data is defined by the data width of the initiator. Figure 17 extends Figure 16 to depict multiple beat
bursts.

(v1.0.2, 20-JAN-2009) www.silistix.com

Silistix

Figure 17: Three Initiator Blocks with Multiple Beat Bursts within a Mode

t=0 t=n
. % : | Potentially missed
Initiator 10 K Write to TO >< Read from:T1 > L_[“i“i"?rf_c?rlt?n_“?ﬂ__l
. : o
Initiator 11 < Write to TO >< Read from:T0 >< Read from:T1 >| :
L ___1
Initiator 12 < Read from:T1 >< Read from:TO >< Read from:T1 >< Read from:T0 >

From Figure 17, observe that all three initiators 10, 11 and 12, have different execution times. If all
three initiators started generating traffic simultaneously, then the simulation might miss potential
network contention toward the end of the simulation. In this example, 10 finishes first.
Consequently, 11 will not have to contend with 10 during roughly the last third of its transactions.
Similarly, 12 will not have to compete with 10 for the last beat of its third transaction or any of its
fourth transaction. 12 will also not have to compete with 11 during the last beat of its final
transaction.

To remedy these potentially inaccurate simulations of worst-cast traffic, CSL Compiler repeats each
initiator block a proportionate number of times so that all initiators complete their transactions at
approximately the same time, as shown in Figure 18. This approach ensures that any potential
network contention between initiators continues throughout the full simulation.

Figure 18: Proportional Iterations to Sustain Contention

t=0 r Small time gap between iterations t=n e interations

Initiator 10 X)l(X)l(X)l(X)l(X
OO OO - X
Initiator 12 :X X X)I(X X X)“‘l(X X X

\

Initiator 11

Y

--npv-iterations

Iteration Count

CSL Compiler generates just enough traffic to determine whether the design meets the specified CSL
bandwidth and latency requirements, resulting in fast simulation times. By default, NPV generates
ten iterations. However, it is possible that potential contention conditions within a mode might be
missed due to small time gaps between iterations, as highlighted in Figure 18. To address this
potential issue, specify a larger iteration count (> 10), indicating number of times to repeat the
traffic pattern for an initiator. Set the iteration count using CSL Compiler’s --npv-iterations
command line option. As might be expected, a larger number of iterations increases simulation
execution time. However, the larger number of iterations may potentially identify corner cases
where a network should be provisioned differently.

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Importance of CSL Accuracy

The fundamental goal of NPV is to generate worst case data traffic patterns that stress the network in
order to guarantee that the design meets the specified bandwidth and latency requirements.

Modes

Virtually all SoCs have inherent modes of operation. For example, many SoCs have a reset mode, a
low power mode, and a high performance mode. Some designs may have dozens of operating
modes. Within a CSL file, use a separate mode statement to specify the bandwidth and latency
requirements for each exclusive operating mode. CSL Compiler leverages this information to create
a properly-provisioned network and to generate the NPV traffic files to test the network.

Failing to realistically describe modes and their communication requirements could result in a
network that passes all tests but fails to perform satisfactorily with actual software running on the
final silicon.

Connection Requirements

Set realistic latency and bandwidth requirements for the connections defined within a mode
statement. Overly aggressive latency or bandwidth requirements may skew the network, resulting in
increased latency and lower bandwidth elsewhere on the network, and likely making the resulting
network far larger than necessary. CSL Compiler will attempt meet these requirements and to
generate NPV traffic files to test them. However, network performance failures are likely to result
and will need to be investigated and resolved.

Data Width

The data width of a CSL endpoint describes how many bits of data are transmitted in a single cycle
at the frequency of the endpoint, also called a beat. The wider the data width, the more data bits are
transmitted in a shorter period of time. However, the data widths of different endpoints need not be
the same, although there is additional logic overhead when a wide endpoint communicates with a
narrower endpoint. Arbitrarily widening a data width may not provide the expected results.

When CSL Compiler encounters mismatched data widths between an initiator and a target, it
generates NPV traffic with the beat width equal to the smaller data width of the two endpoints.

Burst Length and Addressing

Burst length is a critical component of bandwidth; a longer burst has less overhead per transaction in
terms of total bits transmitted and time is involved. While a longer burst length improves bandwidth,
it also has a large impact on the storage necessary to hold them.

When CSL Compiler generates NPV traffic, it transmits random data value. The NPV test harness
checks that these random values were correctly received by the target during a write operation or by
the initiator during a read operation. Each beat of a burst uses an incremented address from the
previous beat, cycling through and wrapping around within the address map locations of the target.

Outstanding Transactions

In CSL, the outstanding statement describes the maximum number of outstanding transactions
that can be in flight over the network at any point in time. Presently, only AXI and OCP protocols
support multiple outstanding. Increasing the number of outstanding transactions of an initiator can
dramatically improve network bandwidth capabilities, but at the cost of a significant amount of
storage within the network.

(v1.0.2, 20-JAN-2009) www.silistix.com

29

Silistix

The CSL Compiler software uses the value of the outstanding statement to properly provision
the network and to estimate bandwidth performance. The outstanding statement does not affect
NPV traffic. Instead, the NPV test harness communicates with the adapter hardware that tracks the
number of outstanding transactions that the adapter can support. The adapter signals the NPV test
harness when it cannot yet accept another transaction.

Utilization Threshold

The CSL utilization_threshold statement provides a useful way to over provision a
network for those cases when bandwidth requirements can only be roughly approximated or are
subject to change. Setting the utilization_threshold to 80% provides an additional 20%
overhead to handle any uncertainties.

Role of the First Placement Estimator (FPE)

The First Placement Estimator (FPE) tool uses pre-placement information to provide NPV with more
realistic wire delays. Wire delays have a significant impact on the actual network latency and
bandwidth. Running NPV validation on a network after performing FPE is an important step to
guaranteed performance closure.

www.silistix.com (v1.0.2, 20-JAN-2009)

Silistix

Silistix
Glossary

Term Description

FPE First Placement Estimator
NoC Network on Chip

NPV NoC Performance Validation
RTL Register Transfer Level
SoC System on Chip

Tcl Tool Command Language

(v1.0.2, 20-JAN-2009)

www.silistix.com

31

Silistix

Revision History

Revision Date Description/Revisions
| 102 20-JAN-2009 | Updated CHAINworks version to 2.2. |
| 101 12-DEC-2008 | Minor corrections and updates. |
[10 31-OCT-2008 | Initial release. |
Feedback

Feedback on this Silistix document and all Silistix products is highly encouraged. If you have a
comment, correction, or suggestion to improve this document, please send us an E-mail. Please
include complete details including page numbers, section titles, or figure or table numbers where
appropriate. Thank you in advance for helping us to improve our products and services.

feedback@silistix.com

32

www.silistix.com

(v1.0.2, 20-JAN-2009)

mailto:feedback@silistix.com?subject=[FEEDBACK:%20%20NPV%20Verification%20User%20Guide,%20v1.0.2]:&body=Describe%20the%20correction,%20%20comment,%20or%20suggestion%20in%20detail%20using%20page%20numbers,%20section%20titles,%20or%20figure%20or%20table%20numbers%20where%20appropriate.

	Performance Closure using Silistix NoC Performance Validation (NPV)
	Overview
	The Challenge without NPV
	NPV Simplifies Performance Closure and Network Testing

	Achieving Performance Closure using Silistix NoC Performance Validation (NPV)
	NPV Performance Sign-Off Process
	Pre-NPV Check
	Architecture Phase
	CHAINarchitect Option Settings
	CSL Compiler Command Line
	Run Simulation Script on Each NPV File

	Implementation Phase
	Freezing a Network
	CHAINarchitect Option Settings
	FPE section
	Generate Verilog section

	CSL Compiler Command Line
	First Placement Estimation (FPE)
	Generate NPV

	Run Simulation Script on Each NPV File
	Preparing for Post-Layout Phase

	Post Layout Phase
	Run Simulation Script on Each NPV File
	What If NPV Results Do Not Pass?

	Generating NPV Files in CHAINarchitect
	Before First Placement Estimator (FPE)
	After First Placement Estimator (FPE)
	Files Created
	Simulation Shell Script
	NPV Files

	Simulator Setup
	Supported Simulators
	$SILISTIX_HOME Environment Variable

	Executing an NPV Test
	NPV-Related CSL Compiler Options
	Example NPV Stimulus File
	Example Report File Output
	Summary
	Trace Report
	Example Output
	Transaction Type

	NPV Technical Details
	Basics of Performance Closure
	Data Production
	Data Consumption
	Data Transmission

	CSL Compiler Traffic Generation
	Structure of a Mode
	Iteration Count

	Importance of CSL Accuracy
	Modes
	Connection Requirements
	Data Width
	Burst Length and Addressing
	Outstanding Transactions
	Utilization Threshold
	Role of the First Placement Estimator (FPE)

	Glossary
	Revision History
	Feedback

