

(v1.0.2, 20-JAN-2009) www.silistix.com 1
© 2008 – 2009 by Silistix UK Ltd.

CHAIN
®
 Network

Performance Closure and
Verification User Guide

(CHAIN®works 2.2)

CHAIN Network Performance Closure and Verification User Guide

2 www.silistix.com (v1.0.2, 20-JAN-2009)

License

© 2008 Silistix, All Rights Reserved.

This document, including all software and software described in it, is furnished under the terms of

the CHAIN Documentation License Agreement (the "License") and may only be used or copied in

accordance with the terms of the License. The information in this document is a work in progress,

developed by Silistix, and is furnished for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks

and/or trade secrets owned by or licensed to Silistix. Silistix reserves all rights with respect to such

technology and related materials. Any use of the protected technology and related material beyond

the terms of the License without the prior written consent of Silistix is prohibited.

This document contains material that is confidential to Silistix and its licensors. The user should

assume that all materials contained and/or referenced in this document are confidential and

proprietary unless otherwise indicated or apparent from the nature of such materials (for example,

references to publicly available forms or documents). Disclosure or use of this document or any

material contained herein, other than as expressly permitted, is prohibited without the prior written

consent of Silistix or such other party that may grant permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and

unregistered trademarks of Silistix.

The copyright and trademarks owned by Silistix, whether registered or unregistered, may not be used

in connection with any product or service that is not owned, approved or distributed by Silistix, and

may not be used in any manner that is likely to cause customer confusion or that disparages Silistix.

Nothing contained in this document should be construed as granting by implication, estoppel, or

otherwise, any license or right to use any copyright without the express written consent of Silistix, its

licensors or a third party owner of any such trademark.

Disclaimer

Except as otherwise expressly provided, this specification and any other documentation is provided

by Silistix to users "as is" without warranty of any kind, express, implied or statutory, including but

not limited to any implied warranties of merchantability, fitness for a particular purpose and non-

infringement of third party rights.

Silistix shall not be liable for any direct, indirect, incidental, special or consequential damages of any

kind or nature whatsoever (including, without limitation, any damages arising from loss of use or lost

business, revenue, profits, data or goodwill) arising in connection with any infringement claims by

third parties or the specification, whether in an action in contract, tort, strict liability, negligence, or

any other theory, even if advised of the possibility of such damages.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 3

Table of Contents

PERFORMANCE CLOSURE USING SILISTIX NOC PERFORMANCE VALIDATION

(NPV) ... 5

Overview ... 5

The Challenge without NPV .. 5

NPV Simplifies Performance Closure and Network Testing 6

ACHIEVING PERFORMANCE CLOSURE USING SILISTIX NOC PERFORMANCE

VALIDATION (NPV) ... 9

NPV Performance Sign-Off Process ... 9

Pre-NPV Check ... 10

Architecture Phase .. 11

CHAINarchitect Option Settings .. 12

CSL Compiler Command Line ... 12

Run Simulation Script on Each NPV File ... 12

Implementation Phase ... 13

Freezing a Network .. 14

CHAINarchitect Option Settings .. 14

CSL Compiler Command Line ... 14

Run Simulation Script on Each NPV File ... 14

Preparing for Post-Layout Phase ... 15

Post Layout Phase ... 16

Run Simulation Script on Each NPV File ... 16

What If NPV Results Do Not Pass? ... 17

Generating NPV Files in CHAINarchitect ... 17

Before First Placement Estimator (FPE) .. 18

After First Placement Estimator (FPE) ... 18

Files Created ... 18

Simulator Setup ... 19

Supported Simulators .. 19

$SILISTIX_HOME Environment Variable ... 19

Executing an NPV Test .. 20

NPV-Related CSL Compiler Options .. 21

Example NPV Stimulus File ... 22

Example Report File Output .. 23

Summary ... 23

Trace Report .. 24

CHAIN Network Performance Closure and Verification User Guide

4 www.silistix.com (v1.0.2, 20-JAN-2009)

NPV TECHNICAL DETAILS ... 25

Basics of Performance Closure .. 25

Data Production ... 25

Data Consumption ... 25

Data Transmission ... 26

CSL Compiler Traffic Generation ... 26

Structure of a Mode ... 27

Iteration Count ... 28

Importance of CSL Accuracy .. 29

Modes .. 29

Connection Requirements ... 29

Data Width ... 29

Burst Length and Addressing .. 29

Outstanding Transactions .. 29

Utilization Threshold .. 30

Role of the First Placement Estimator (FPE) ... 30

GLOSSARY ... 31

Revision History ... 32

Feedback .. 32

(v1.0.2, 20-JAN-2009) www.silistix.com 5
© 2008 – 2009 by Silistix UK Ltd.

Performance Closure using

Silistix NoC Performance Validation (NPV)

Overview

The Silistix NoC Performance Validation (NPV) feature augments and simplifies the existing EDA

flow for System on Chip (SoC) design. Essentially, NPV provides an easier path to performance

closure and sign-off compared to traditional methods. Performance closure is the process of

verifying, at various points during the chip development flow, that the requirements specified in a

CSL design are met, eventually leading to performance signoff prior to IC tape-out.

NPV generates worst case data traffic patterns that stress the Silistix network in order to guarantee

that the design meets the specified bandwidth and latency requirements. Perhaps the easiest way to

understand the benefits of NoC Performance Validation (NPV) is to compare the challenges when

verifying an on-chip network with and without NPV.

The Challenge without NPV

First, consider the example design shown in Figure 1 that uses traditional verification techniques. In

such an environment, the system designer or test engineer must laboriously create a testbench or test

harness that …

 drives a transaction over the network using the initiator’s native protocol,

 monitors the transaction at the target,

 correctly responds to the transaction using the target’s native protocol,

 verifies that both the initiator and target have sent or received the correct data,

 drives network traffic with worst-case patterns, and

 checks that the network meets the application’s bandwidth and latency requirements.

CHAIN Network Performance Closure and Verification User Guide

6 www.silistix.com (v1.0.2, 20-JAN-2009)

Figure 1: Traditional Testbench Approach

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

A
d

a
p

te
r

G
a

te
w

a
y

G
a

te
w

a
y

A
d

a
p

te
r

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

To other enpoints

To other enpoints

To other enpoints

Initiator Endpoint

Target Endpoint

Drive
transactions here

Monitor and
respond to

transactions here

Verify that the transaction
successfully completed

and met required
bandwidth and latency

Such a testbench quickly becomes complex; a major design task by itself. Furthermore, the entire

system design must be completed, including the IP blocks at both ends of the network, before

validating the network. The testbench must also exercise both the initiator and target endpoints in

their native protocol in order to generate worst-case network traffic. Finally, the testbench must

include a means to check for successful transactions and check that the application’s bandwidth and

latency requirements are satisfied.

NPV Simplifies Performance Closure and Network Testing

Compare the traditional approach to the simpler, more automated NoC Performance Validation

(NPV) approach shown in Figure 2. NPV automatically generates a test environment to verify the

performance of a Silistix Network on Chip (NoC). The automated NPV test harness replaces the

user-defined endpoints on the network with pre-built test transactors. The transactors connect to the

NPV controller that automatically generates real-world network traffic. The controller also monitors

each transaction and produces a report that shows the resulting bandwidth and latency performance

for each connection. The NPV environment aids performance closure and augments the

performance analysis within CHAINarchitect. Furthermore, NPV eliminates the need to have all

endpoints in place before validating network performance.

The NPV testbench generates and consumes network traffic that is representative of the actual

system when the system is in a particular mode of operation. CHAINarchitect or the CSL Compiler

generates traffic files that are read by the NPV test harness. The NPV harness converts the test data

into signals that stimulate data flow between adapters, mimicking transactions by the actual endpoint

hardware and software.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 7

Figure 2: Automated NoC Performance Validation (NPV) Environment

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

A
d

a
p

te
r

G
a

te
w

a
y

G
a

te
w

a
y

A
d

a
p

te
r

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

To other enpoints

To other enpoints

To other enpoints

Initiator Endpoint

Target Endpoint

NPV Controller

Protocol-specific

Transactor

Protocol-specific

Transactor

Results

Report

NPV provides a predictable view of the NoC during the entire development process. Network

performance can be re-verified at each step of the development process, increasing the accuracy of

the final result. This predictability increases confidence in the implemented results for the system.

CHAIN Network Performance Closure and Verification User Guide

8 www.silistix.com (v1.0.2, 20-JAN-2009)

[THIS PAGE INTENTIONALLY LEFT BLANK]

(v1.0.2, 20-JAN-2009) www.silistix.com 9
© 2008 – 2009 by Silistix UK Ltd.

Achieving Performance Closure using

Silistix NoC Performance Validation (NPV)

NPV Performance Sign-Off Process

Using NPV, the performance signoff process includes multiple steps, as shown in Figure 3. Before

beginning the NPV validation process, check the performance requirements specified in the CSL file

using CHAINarchitect or CSL Compiler. This pre-NPV check uses static modeling and simple wire

delay approximations to check performance. Design iterations at this point are fast and easy.

Figure 3: Silistix NPV Performance Closure Process

Implementation Phase

Architecture Phase

Physical Design Phase

Performance Signoff

Simple approximation of wire delays
Optimizations have big impact
Iterations are relatively fast
Fine tuning the approximations makes little sense

FPE improves wire delay approximations
Optimizations have big impact
Iterations remain relatively fast
Requires more information about the overall design

Uses physical wire delay and position information
Iterations more difficult, take longer

Pre-NPV Check

Simple approximation of wire delays
Check that CSL design meets basic requirements

Iterations are fast and easy
Optimizations have big impact

S
il
is

ti
x
 N

o
C

 P
e
rf

o
rm

a
n
c
e
 V

a
li
d
a
ti
o
n
 (
N

P
V

)

Effort

C
o

n
fi

d
e

n
c

e

The first step in the NPV validation process is called the Architecture Phase and provides a first level

of confidence before progressing with the design. Here, the CSL design is checked against the

specified performance requirements using a cycle-accurate simulation model, but using a simple

approximation of wire delays.

CHAIN Network Performance Closure and Verification User Guide

10 www.silistix.com (v1.0.2, 20-JAN-2009)

The Implementation Phase is the second phase of the performance signoff process. This phase

integrates more-detailed physical design parameters into the simulation model, resulting in a much

higher degree of confidence before entering the physical design phase of the overall chip design.

The physical information leverages the First Placement Estimator (FPE) tool within the Silistix

CHAINarchitect software.

After successfully completing the Implementation Phase, there is sufficient confidence to begin the

lengthy synthesis, verification and chip assembly phases of the design. Changes after this point

become significantly more difficult and time consuming.

The third and final step in the NPV performance signoff process is the Post Layout Phase. This phase

requires a fully laid out chip design. The extracted post-layout information ultimately provides the

confidence that the resulting physical silicon meets the specified bandwidth and latency

requirements.

Pre-NPV Check

Before starting NPV verification, ensure that the CSL file meets the specified performance

requirements for the application, as shown in Figure 4. From within CHAINarchitect, run the Check

operation and verify that no errors or performance-related warnings are reported. For more

information using CHAINarchitect, please refer to the following document.

Building and Analyzing On-Chip Networks using CHAINarchitect

(chainarchitect-user-guide.pdf)

Figure 4: Pre-NPV Check

Report File

Silistix

CHAINarchitect

Check CSL

system my_system
{
 ...
}

Connection Specification
Language (CSL) File

CSL

Trade-off
Analysis

and
Performance

Tuning

Fast
Iteration

and
Analysis

Passed?

CSL
Compiler

NPV Architecture Phase

No

Yes

Library

To process the design with CSL Compiler, use the following command line options.

cslc <csl_source_file>.csl

chainarchitect-user-guide.pdf

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 11

The CHAINarchitect Check operation provides a fast and relatively accurate performance check

using a static timing model and a simple approximation of wire delay. If the Check operation is

successful, proceed to NPV validation, starting with the Architecture Phase.

Architecture Phase

Figure 5 shows the Verilog-based NPV flow during the architectural phase. Using the proper

settings, CHAINarchitect or CSL Compiler generates the following output files.

 Behavioral Verilog model of the Silistix network. A SystemC model is a separate option.

 Simulator-specific script file, simulate.sh

 Various .npv files, one per mode defined in the CSL source file. If no modes are specified in

the CSL design, then only default.npv is created.

Figure 5: Verilog-based NPV Verification: Architecture Phase

Silistix

CHAINarchitect

system my_system
{
 ...
}

Connection Specification
Language (CSL) File

CSL

Trade-off
Analysis

and
Performance

Tuning

Generate
Verilog

Behavioral
Verilog

Simulation
Script

Execute NPV Simulation

Script

Results
File

Passed?

CSL
Compiler

NPV
Traffic

No

Yes

NPV Implementation Phase

--generate-verilog
--generate-npv-traffic

Library

To generate NPV files, include the --generate-npv-traffic CSL Compiler option. By

default, the generated NPV files appear in the <system_name>/npv subdirectory. CSL

Compiler generates one NPV file per mode statement declared in the source CSL file.

CHAIN Network Performance Closure and Verification User Guide

12 www.silistix.com (v1.0.2, 20-JAN-2009)

CHAINarchitect Option Settings

As shown in Figure 10 on page 18, set the following options in the Generate Verilog section.

--generate-report --generate-npv-traffic --generate-verilog

CSL Compiler Command Line

To process the design with CSL Compiler, use the following command line options.

cslc <csl_source_file>.csl --generate-report --generate-npv-traffic \
 --generate-verilog

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an

NPV Test” on page 20 for more information.

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements. See “Example Report File Output” on page 23 for more

information.

If all NPV simulations pass, continue to the Implementation Phase.

If an NPV simulation does not pass, then see Option 1 under “What If NPV Results Do Not Pass?”

on page 17 for more information.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 13

Implementation Phase

The Implementation Phase, shown in Figure 6, includes the placement-related affects on timing. The

First Placement Estimator (FPE) tool uses pre-placement information to provide more realistic wire

delay times. Because wire delay may have significant impacts on the actual latency and bandwidth,

running NPV on a network after performing FPE is a mandatory step to guaranteed performance

closure.

Figure 6: Verilog-based NPV Verification: Implementation Phase

DEF
Layout

Silistix

CHAINarchitect

system my_system
{
 ...
}

Connection Specification
Language (CSL) File

CSL

Trade-off
Analysis

and
Performance

Tuning

Generate
Verilog

Structural
Verilog

Structural
CSL

Simulation
Script

Execute NPV Simulation

Script

Results
File

Passed?

Logic Synthesis

Place and Route

DEF
Layout

CSL
Compiler

FPE

NPV
Traffic

No

Yes

Structural
CSL

Extracted
DEF

Layout

Back-Annotation

Extraction
NPV Post-Layout Phase

--generate-verilog
--generate-npv-traffic
--clean-fpe-database
--perform-fpe
--generate-scsl

--define:INCLUDE_SCSL
Once network frozen

One NPV file per
mode statement

Library

CHAIN Network Performance Closure and Verification User Guide

14 www.silistix.com (v1.0.2, 20-JAN-2009)

Freezing a Network

After creating an acceptable initial physical placement that meets all the specified requirements,

freeze the network so that it can be annotated and re-verified against those requirements later. To

freeze the network, perform the following steps.

1. Generate a structural CSL file by including the --generate-scsl compiler option.

2. In the original CSL source file, add the following lines just inside the closing brace of the system

declaration to reference the structural CSL file, as shown in Figure 7.

Figure 7: Method to Include Structural CSL File
system <system_name> {

 ...

 #if defined(INCLUDE_SCSL)
 #include "<system_name>/scsl/<scsl file name>.csl"
 #endif
} // end system

3. To use the frozen structural CSL file, add the following command line option.

cslc <filename> <options> --define:INCLUDE_SCSL

CHAINarchitect Option Settings

As shown in Figure 10 on page 18, set the following options CSL Compilers.

FPE section

--generate-report --clean-fpe-database --perform-fpe \
 --generate-scsl: <structural_csl_file>.csl

Generate Verilog section

--generate-report --generate-npv-traffic \
 --generate-verilog --define:INCLUDE_SCSL

CSL Compiler Command Line

To process the design with CSL Compiler from the command line, use the following options.

First Placement Estimation (FPE)

cslc <csl_source_file>.csl --generate-report --clean-fpe-database \
 --perform-fpe --generate-scsl:<structural_csl_file>.csl

Generate NPV

cslc <csl_source_file>.csl --generate-report --generate-npv-traffic \
 --generate-verilog --define:INCLUDE_SCSL

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an

NPV Test” on page 20 for more information.

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements. See “Example Report File Output” on page 23 for more

information.

If all NPV simulations pass, continue to the Preparing for Post-Layout Phase.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 15

Preparing for Post-Layout Phase

Any placement information generated by FPE is saved in a DEF file. This information is useful for

Preparing for Post-Layout Phase. The resulting *.def file is saved under the constraints

subdirectory.

Use the DEF file during logic synthesis and placement and routing. The ultimate result is a post-

layout DEF file. CHAINworks provides a script for your EDA flow to extract DEF files from your

laid out design that can be read directly into CSL Compiler for the generation of timing annotated

networks for NPV performance closure and signoff.

Continue to “Post Layout Phase” on page 16.

CHAIN Network Performance Closure and Verification User Guide

16 www.silistix.com (v1.0.2, 20-JAN-2009)

Post Layout Phase

Although FPE generally provides good estimates of wire lengths, the actual location of some

network components likely changed during final layout. To complete the performance sign-off

process, extract actual placement and wire delay information from the final design and feed it back

through the system, as shown in Figure 8. This back-annotation step produces highly accurate

timing information to guarantee final performance closure.

Figure 8: Verilog-based NPV Verification: Post-Layout Sign-off

Silistix

CHAINarchitect

system my_system
{
 ...
}

Connection Specification
Language (CSL) Requirements,

include structural CSL

CSL

Generate
Verilog

Structural
Verilog

Structural
CSL

Simulation
Script

Execute NPV Simulation

Script

Results
File

Passed?

Extracted
DEF

Layout
CSL

Compiler

NPV
Traffic

Yes

Performance Sign-off

Achieved!

Library

--generate-verilog
--generate-npv-traffic

LEF
LayoutTrade-off

Analysis
and

Performance
Tuning

No

--define:INCLUDE_SCSL

Run Simulation Script on Each NPV File

After generating the NPV files, execute the simulation script for each NPV file. See “Executing an

NPV Test” on page 20 for more information.

Examine the summary at the end of the simulation log file for each NPV. Verify that the mode

meets the current requirements. See “Example Report File Output” on page 23 for more

information.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 17

If all NPV simulations pass, then the design achieved performance closure. Proceed to silicon

fabrication.

What If NPV Results Do Not Pass?

If the application passes all NPV validation steps but fails to meet the original design requirement

during the Post-Layout Phase, there are two options.

1. Modify the bandwidth or latency requirement(s) in the CSL source file.

Examine the cases of negative slack described in the report file. Determine whether the design

can tolerate slackening the bandwidth or latency requirements described in the CSL source file.

The reported negative slack may be negligible or the original requirement might be over-

specified or unrealistic.

2. Modify structural CSL, re-generate Verilog, re-synthesize, re-layout, and iterate again

The other option is to modify the structural CSL, which is more complex. This also requires that

the design be re-processed back through enire the design flow, which is a time consuming

process.

Generating NPV Files in CHAINarchitect

To generate NPV files, include the --generate-npv-traffic CSL Compiler option for

Generate Verilog, as described below.

The Silistix CSL Compiler underlies all CHAINarchitect operations. To set specific options for the

CSL Compiler software, follow the steps outlined after Figure 9. See “NPV-Related CSL Compiler

Options” on page 21 for a list of all NPV options.

Figure 9: Right-click on CSL File, Select Properties

2

1

1

As shown in Figure 9, expand the project tree to reveal the CSL file. Right-click on the CSL

file name.

2

Select Properties from the resulting pop-up menu.

CHAIN Network Performance Closure and Verification User Guide

18 www.silistix.com (v1.0.2, 20-JAN-2009)

Figure 10: Set Generate Verilog Options

3

4

5

3

As shown in Figure 10, click Cslc Compiler to reveal the available option settings.

4

Modify the Generate Verilog options using one of the following two option settings. Be

sure to include the --generate-npv-traffic option.

 Before First Placement Estimator (FPE)

 After First Placement Estimator (FPE)

5

When finished, click OK to save the new option settings.

Before First Placement Estimator (FPE)

Use these options without generating a First Placement Estimation.

--generate-verilog --generate-npv-traffic

After First Placement Estimator (FPE)

Use these options to generate a First Placement Estimation. The output design includes any

pipelatch components required to guarantee bandwidth across the chip.

--clean-fpe-database [other FPE options] --perform-fpe --generate-verilog \
--generate-npv-traffic

Files Created

After generating Verilog, CHAINarchitect or the CSL Compiler generates a Simulation Shell Script

and one or more NPV Files. The resulting files appear in the CHAINarchitect Project Explorer, as

shown in Figure 11.

Simulation Shell Script

The simulation shell script, simulate.sh, appears under the verilog project sub-directory.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 19

Figure 11: NPV File Directory

NPV Files

CHAINarchitect or the CSL Compiler creates one NPV file for each mode statement in the CSL

source file. If no mode statements are used, then only one file is generated, called default.npv.

The NPV files appear under the npv project sub-directory.

Simulator Setup

The Simulation Shell Script requires a supported Supported Simulator and a $SILISTIX_HOME

Environment Variable.

Supported Simulators

The Silistix NPV simulation script supports the following simulators. Add the appropriate option

settings shown in Table 1 to the simulator-specific script command line.

 Mentor Graphics® ModelSim® or Questa® (vsim)

 Synopsys® VCS®

 Cadence® NC-Verilog®

 SystemC Simulator

$SILISTIX_HOME Environment Variable

The simulator shell script requires that the $SILISTIX_HOME variable be set, which is also

required to invoke the CHAINarchitect or CSL Compiler software.

CHAIN Network Performance Closure and Verification User Guide

20 www.silistix.com (v1.0.2, 20-JAN-2009)

Executing an NPV Test

Run the Simulation Shell Script from a console window. If more than one mode is specified in the

CSL file, run the shell script for each *.npv file.

Run the script from the within the CSL system director. By default, the script output appears on the

standard output. Generally, redirect the log file output to a specified output file. An example

command line appears below for the default mode.

cd my_system

./simulate.sh –-batch -–vectors npv/default.npv --logfile default.log

The simulator script supports the options listed in Table 1.

Table 1: Simulation Script Options

Option Description Alias

--structural-hardmacros Use structural hardmacro models in simulations
-struct
--structural

--behavioral-hardmacros
Use behavioral hardmacro models in
simulations

-behav
--behavioral

--logfile <filename> Output simulator transcript to filename -l

--batch
Run simulator on the command line and exit on
completion

-c

--gui Run the simulator with graphical user interface -gui

--verbose Run the simulator in verbose mode

--quiet Run the simulator in quiet mode

--vectors <filename>
Use the vectors from filename for the simulation
(multiple -vectors <filename> can be used)

--all-vectors Use all vectors found for the current project

--ncverilog Use CadenceNC-Verilog simulator
-ncv
--ncv

--vsim
Use Mentor Graphics ModelSim or Questa
simulator

-vsim
--modelsim
-–questasim

--vcs Use Synopsys VCS simulator -vcs

--work Set ModelSim work directories

--systemc Use SystemC simulator

--post_synthesis
Use post synthesis netlists and back-annotated
SDF

-sdf
--
backannotate

--compile-arguments
Pass arguments to the compile phase of the
simulation. e.g. --cargs "<option1> <option2>..."
typically things like +define+

-cargs
--cargs

--run-arguments
Pass commands to simulation when it is run.
e.g. --rargs "<option1> <option2>..." typically
things like -gui

-rargs
--rargs

--run-commands
Pass commands to simulation once it is loaded.
e.g. --rcom "<option1> <option2>..." typically tcl
commands such as run -a

-rcom

--help Display this help text
-h
-help

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 21

NPV-Related CSL Compiler Options

Table 2 lists the NPV-related options for CSL Compiler.

Table 2: CSL Compiler Options for NPV

Option Description Alias
--define:INCLUDE_SCSL Include the referenced structure CSL file

--generate-npv-traffic[:<dir>] Generate NPV traffic files. -npv

--npv-threshold:<tolerance> NPV bandwidth tolerance. -npvt

--npv-iterations:<n>
NPV minimum traffic iteration count for
initiators. Default is 10.

-npvi

--fast-npv-traffic
Generate NPV traffic for faster (less accurate)
simulation

--distribute-npv-traffic Distribute NPV traffic

--randomize-npv-traffic Randomly stagger NPV traffic

--perform-fpe[:<dbpath>] Perform First Placement Estimation (FPE) -fpe

--clean-fpe-database Clean FPE Database -cfpe

--fpe-center-gateways Center Network Gateways within Soft IP Block -fpcgw

--fpe-weights:w1_w2_w3_w4
Set FPE Weights for the various inter-block
connections

-wt:

--fpe-sub-block-size:<size>
Sets the FPE Sub-block Size, in µm. Default is
30um.

-sbs:

--fpe-wrap-edges Wrap Soft IP Block Edges -wse

--no-pipelatch-insertion No Pipelatch Insertion -nopl

--generate-scsl[:filename] Generate Structural CSL File -gf

--generate-verilog Generate DEF File -gv

CHAIN Network Performance Closure and Verification User Guide

22 www.silistix.com (v1.0.2, 20-JAN-2009)

Example NPV Stimulus File

Figure 12 shows an example NPV stimulus file generated automatically by CHAINarchitect or CSL

Compiler. A separate NPV file is generated for every mode statement in the CSL source file, plus a

default.npv for any connections that are not declared within a mode statement.

Figure 12: Example NPV Stimulus File

CHAINworks system-level test pattern file
Cslc version Aug 22 2008:15:12:49
Run on Tue Sep 23 17:16:34 2008
command line = "src/silistix_training_demo_master.csl -or -gv -bm -npv -dq "
system: silistix_training_demo mode: default

Initiator IDs
0 cpu_block/cpu/i_port
1 mpeg_block/mpeg/i_port
2 dma_block/dma/i_port
Target IDs
0 host_interface/eth/t_port
1 dram_block/dram/t_port

@initiator cpu_i_port 0 AXI 32 32
@initiator mpeg_i_port 1 AXI 32 32
@initiator dma_i_port 2 AXI 32 32

@stimuli

Setup Instrumentation

dma_block/dma/i_port <= host_interface/eth/t_port
%2 check_read_bandwidth 0 104857600
dma_block/dma/i_port => host_interface/eth/t_port
%2 check_write_bandwidth 0 104857600
cpu_block/cpu/i_port <= dram_block/dram/t_port
%0 check_roundtrip_read_latency 1 140e-9
%0 check_read_bandwidth 1 209715200
dma_block/dma/i_port <= dram_block/dram/t_port
%2 check_read_bandwidth 1 209715200
cpu_block/cpu/i_port => dram_block/dram/t_port
%0 check_write_bandwidth 1 209715200
mpeg_block/mpeg/i_port => dram_block/dram/t_port
%1 check_write_bandwidth 1 209715200
dma_block/dma/i_port => dram_block/dram/t_port
%2 check_write_bandwidth 1 209715200
mpeg_block/mpeg/i_port <= dram_block/dram/t_port
%1 check_read_bandwidth 1 838860800

Initiator: cpu_block/cpu/i_port

%0 start_bandwidth_window
%0 repeat_block 39
 %0 read 1 INCR 8 0 0x100 32 0x8172de33 60e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 1 0x104 32 0xed860653 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 2 0x108 32 0xb3262fd1 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 3 0x10c 32 0x59b7f78f 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 4 0x110 32 0x26dc250a 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 5 0x114 32 0x98f2328a 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 6 0x118 32 0x4c5b962e 0e-9 0 0 # target: dram_block/dram/t_port
 %0 read 1 INCR 8 7 0x11c 32 0x33155db4 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 0 0x100 32 0x873ce775 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 1 0x104 32 0xc2edc876 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 2 0x108 32 0x13f7476d 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 3 0x10c 32 0xae3efcd4 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 4 0x110 32 0x1b21deb3 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 5 0x114 32 0x14103d60 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 6 0x118 32 0x6cd38e9f 0e-9 0 0 # target: dram_block/dram/t_port
 %0 write 1 INCR 8 7 0x11c 32 0xe9eb5470 60e-9 0 0 # target: dram_block/dram/t_port

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 23

 %0 wait_until 1221e-9
%0 end_block

Report Results

%0 report_roundtrip_read_latency 1
%0 report_read_bandwidth 1
%0 report_write_bandwidth 1
%1 report_write_bandwidth 1
%1 report_read_bandwidth 1
%2 report_read_bandwidth 0
%2 report_write_bandwidth 0
%2 report_read_bandwidth 1
%2 report_write_bandwidth 1

Example Report File Output

Executing an NPV file creates a large report file. The end of the report file includes a Summary of

results of the NPV testing. The details of the specific test patterns are listed in detail in the Trace

Report.

Summary

Figure 13 shows an example summary section from an output file generated by the simulation script.

The output shown here is formatted to fit the page and is slightly different than the actual format as it

appears in the file.

The summary report lists the required and achieved latency or bandwidth values from every initiator

to every connected target. Results are summarized separately for every initiator and then, for each

initiator, further summarized by each connected target. For connections with specific requirements,

the report file also shows the available slack in the specification.

 A positive slack indicates that the connection meets the requirement.

 A negative slack indicates that the connection misses the requirement. Further analysis and

possible system modifications are required for any connection with negative slack.

Figure 13: Example Report File Summary

#===

NPV Summary Report

Results cpu_i_port
Connection to: dram_t_port: fwd transactions= 600; rsp transactions=400
Read latency cpu_i_port => dram_t_port:
 (unconstrained, achieved min 145.00ns, max 190.00ns, average 149.00ns)
Write latency cpu_i_port => dram_t_port:
 (unconstrained, achieved min 87.00ns, max 112.00ns, average 90.00ns
Read bandwidth cpu_i_port <= dram_t_port:
 (required 10.0MBps, achieved 10.5MBps, slack 0.53471MBps)
Write bandwidth cpu_i_port => dram_t_port:
 (required 10.0MBps, achieved 8.9MBps, slack -1.13583MBps)

CHAIN Network Performance Closure and Verification User Guide

24 www.silistix.com (v1.0.2, 20-JAN-2009)

Trace Report

The trace report provides a detailed accounting of each action and transaction that occurs on the

network.

Example Output

Figure 14 provides an example snippet from the trace report. All actions listed in chronological

order, are time stamped, with all relevant transfer details (Transaction Type, address, data, size, ID),

and where possible, referenced back to a line number in the NPV stimulus file.

Figure 14: Example Trace Report Snippet

131.00 cpu_i_port wc---> dram_t_port (line=82): awaddr=0x00000100
 awsize=0x2 awid=0 (initiator 0)

142.70 cpu_i_port --->d dram_t_port : wdata=0x5e100ba2 wstrb=0b1111
 wlast=0 wid= 0 (initiator 0's wid=0)

146.25 mpeg_i_port d---> dram_t_port (line=802): wdata=0x16bbb6cf wid=0
 (initiator 1)

 . . .

277.87 cpu_i_port <---wr dram_t_port : bresp=0 bid=0

Transaction Type

Each transaction in the NPV trace file includes a transaction code, shown in Table 3, indicating the

type of transaction and the direction of data flow.

Table 3: NVP Trace Transaction Type Codes

Code Description

Commands
rc---> Initiator sends a read command

wc---> Initiator sends a write command

--->rc Target accepts read command

--->wc Target accepts write command

Write Data
d---> Initiator sends write data

--->d Target receives write data

Responses

<---rr Target sends read response

<---ww Target sends write response

rr<--- Initiator receives read response

wr<--- Initiator receives write response

Initiator Target

Transaction type

Time stamp

(v1.0.2, 20-JAN-2009) www.silistix.com 25
© 2008 – 2009 by Silistix UK Ltd.

NPV Technical Details

Basics of Performance Closure

The NPV test environment helps achieve performance closure across all modes of operation within a

system. The environment generates representative worst case traffic and ensures that the

transactions meet the bandwidth and latency requirements of the system under actual operating

conditions.

While SystemC modeling and other high-level mechanisms for modeling system level performance

are useful, NPV stresses the performance corner cases by generating worst case traffic and proving

that the requirements are met.

Three conditions determine whether an on-chip network meets the bandwidth and latency

requirements specified by in a CSL source file.

1. Data Production,

2. Data Consumption, and

3. Data Transmission.

In other words, the NPV performance closure process validates that the system can produce,

consume, and tramsit data at the required rates to guarantee full system operation?

Data Production
Data production occurs at both the initiator and target end of the network. Initiators on the Silistix

network produce transactions that carry data during write operations or that issue commands and

addresses to a target to which the target must respond. A target produces data during read operations

or by responding to a request. In either case, the rate at which an initiator or target produces daa

depends upon the initiator’s operating frequency, and the data width of the transfer. For burst write

operations, another aspect of data production is the number of beats (cycles of data width bits)

necessary to transmit the entire burst.

Similarly, a target produces data during a read operation or during some response operations back to

the initiator.

NPV uses the read_response and write_response statement declared in the CSL source

file to determine how quickly an initiator or target can produce data once a transaction is received.

Data Consumption
Data consumption, like data production, happens at both the initiator and target end of the network.

During a read operation, the initiator consumes the data produced by the target. During a write

operation, the target consumes the data produced by the initiator. Similar to data production, data

consumption is dictated by the initiator’s or target’s operating frequency, its data width, and burst

length.

NPV uses the read_response and write_response CSL attributes to determine how quickly

an initiator or target should respond after the data of a transaction is consumed. Figure 15 depicts

CHAIN Network Performance Closure and Verification User Guide

26 www.silistix.com (v1.0.2, 20-JAN-2009)

how the read_response time of both the initiator and target are reflected in how data is produced

and consumed.

Figure 15: Read and Write Response Delays

Initiator I0

Target T0

Read A

Response Read A

Read B

Response Read B

Initiator
read_response

delay

Initiator
read_response

delay

Target
read_response

delay

 Read C

When a burst transfer occurs, the response times are applied after the last beat of the burst.

Note that the read_response and write_response times of an initiator or target must be

expressed as a multiple of the period (1/frequency) of the endpoint in nanoseconds.

Data Transmission
Data transmission is the most difficult portion of traffic generation as it relates directly to the amount

of traffic being transmitted simultaneously throughout the network during a given mode of

operation. CSL Compiler uses a static model for provisioning networks and to estimate the

probability of network contention. The primary goal of the NPV validation process is to demonstrate

that the network correctly handles the worst case contention while maintaining the specified

bandwidth and latency requirements.

Contention occurs on the Silistix network under the following conditions

 A Silistix merge or switch network component is currently processing a transaction when

another transaction arrives.

 More transactions arrive at an initiator or target than it has storage to accommodate, which

causes “back pressure” in the system.

Complex SoC designs sometimes handle these contention issues using expensive quality of service

schemes. By comparison, CHAINworks statically generates a properly-provisioned network that

handles all combinations of traffic. The NPV process then proves that the resulting network meets or

exceeds the bandwidth and latency requirements specified by the user. The end result is a fast, small

network proven in advance to meet the specified system communication requirements.

CSL Compiler Traffic Generation

The CSL Compiler generates network traffic based on operating modes declared in the CSL file and

the connections defined within each mode. Each mode statement represents a distinct, exclusive

operating mode. This model further assumes that all transactions between initiators and targets

happen exclusively within the mode; there is no interaction between initiators and targets operating

in another mode. Therefore, CSL Compiler simply generates traffic data that meets the requirements

specified for each initiator/target pair within a given operating mode.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 27

A fundamental concept of NPV and the CSL Compiler static provisioning model is that each mode

operates independently, for an unspecified period of time. Assume for example that a system has

three exclusive operating modes: reset, low power mode, and high-speed data streaming. While

initiators or targets operate in one particular mode, it is unlikely that they simultaneously operate in

another mode. The duration of a mode for NPV validation has no relationship to the amount of time

that the real application will operate in that mode.

CSL Compiler generates NPV stimulus for a mode using its own calculated time window. CSL

Compiler generates sufficient network traffic to show that the CSL Compiler static provisioning and

contention models meet the specified bandwidth and latency requirements described in the CSL

source file.

Structure of a Mode

Within NPV, a mode is represented by a single NPV traffic file with the extension .npv. All CSL

connections that are not defined within a mode are validated with the default.npv file.

Consequently, every CSL file results in at least one NPV traffic file. Any user specified modes result

in a separated NPV traffic file with the mode’s name and the .npv extension.

Conceptually, traffic patterns within a mode are separated into initiator blocks, as shown in Figure

12. Each initiator block describes a series of read and write transaction requests from the initiator to

a target. Each transaction results in a burst of traffic. The length of the burst is specified in the CSL

file.

In Figure 16, initiators are named I0, I1, I2, etc., and targets are named T0, T1, T2, etc. Each of the

horizontal rectangles represents an initiator block and the transactions that it generates during the

mode. Both write and read transactions are interleaved proportionally based on their percentage of

the total traffic they represent for the initiator with the mode.

Figure 16: Three Initiator Blocks within a Mode

Initiator I0 Read from T1

Initiator I1

Initiator I2

Read from T0 Read from T1

Read from T1 Read from T0

Write to T0

Write to T0

Read from T1 Read from T0

t=0 t=n

In reality, however, each read and write transaction consists of one or more beats of data. A beat of

data is defined by the data width of the initiator. Figure 17 extends Figure 16 to depict multiple beat

bursts.

CHAIN Network Performance Closure and Verification User Guide

28 www.silistix.com (v1.0.2, 20-JAN-2009)

Figure 17: Three Initiator Blocks with Multiple Beat Bursts within a Mode

Initiator I0 Read from T1

Initiator I1

Initiator I2

Read from T0 Read from T1

Read from T1 Read from T0

Write to T0

Write to T0

Read from T1 Read from T0

t=0 t=n

Potentially missed
network contention

From Figure 17, observe that all three initiators I0, I1 and I2, have different execution times. If all

three initiators started generating traffic simultaneously, then the simulation might miss potential

network contention toward the end of the simulation. In this example, I0 finishes first.

Consequently, I1 will not have to contend with I0 during roughly the last third of its transactions.

Similarly, I2 will not have to compete with I0 for the last beat of its third transaction or any of its

fourth transaction. I2 will also not have to compete with I1 during the last beat of its final

transaction.

To remedy these potentially inaccurate simulations of worst-cast traffic, CSL Compiler repeats each

initiator block a proportionate number of times so that all initiators complete their transactions at

approximately the same time, as shown in Figure 18. This approach ensures that any potential

network contention between initiators continues throughout the full simulation.

Figure 18: Proportional Iterations to Sustain Contention

Initiator I0

Initiator I1

Initiator I2

t=0 t=n ● interations

--npv-iterations

Small time gap between iterations

Iteration Count

CSL Compiler generates just enough traffic to determine whether the design meets the specified CSL

bandwidth and latency requirements, resulting in fast simulation times. By default, NPV generates

ten iterations. However, it is possible that potential contention conditions within a mode might be

missed due to small time gaps between iterations, as highlighted in Figure 18. To address this

potential issue, specify a larger iteration count (> 10), indicating number of times to repeat the

traffic pattern for an initiator. Set the iteration count using CSL Compiler’s --npv-iterations

command line option. As might be expected, a larger number of iterations increases simulation

execution time. However, the larger number of iterations may potentially identify corner cases

where a network should be provisioned differently.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 29

Importance of CSL Accuracy

The fundamental goal of NPV is to generate worst case data traffic patterns that stress the network in

order to guarantee that the design meets the specified bandwidth and latency requirements.

Modes

Virtually all SoCs have inherent modes of operation. For example, many SoCs have a reset mode, a

low power mode, and a high performance mode. Some designs may have dozens of operating

modes. Within a CSL file, use a separate mode statement to specify the bandwidth and latency

requirements for each exclusive operating mode. CSL Compiler leverages this information to create

a properly-provisioned network and to generate the NPV traffic files to test the network.

Failing to realistically describe modes and their communication requirements could result in a

network that passes all tests but fails to perform satisfactorily with actual software running on the

final silicon.

Connection Requirements

Set realistic latency and bandwidth requirements for the connections defined within a mode

statement. Overly aggressive latency or bandwidth requirements may skew the network, resulting in

increased latency and lower bandwidth elsewhere on the network, and likely making the resulting

network far larger than necessary. CSL Compiler will attempt meet these requirements and to

generate NPV traffic files to test them. However, network performance failures are likely to result

and will need to be investigated and resolved.

Data Width

The data width of a CSL endpoint describes how many bits of data are transmitted in a single cycle

at the frequency of the endpoint, also called a beat. The wider the data width, the more data bits are

transmitted in a shorter period of time. However, the data widths of different endpoints need not be

the same, although there is additional logic overhead when a wide endpoint communicates with a

narrower endpoint. Arbitrarily widening a data width may not provide the expected results.

When CSL Compiler encounters mismatched data widths between an initiator and a target, it

generates NPV traffic with the beat width equal to the smaller data width of the two endpoints.

Burst Length and Addressing

Burst length is a critical component of bandwidth; a longer burst has less overhead per transaction in

terms of total bits transmitted and time is involved. While a longer burst length improves bandwidth,

it also has a large impact on the storage necessary to hold them.

When CSL Compiler generates NPV traffic, it transmits random data value. The NPV test harness

checks that these random values were correctly received by the target during a write operation or by

the initiator during a read operation. Each beat of a burst uses an incremented address from the

previous beat, cycling through and wrapping around within the address map locations of the target.

Outstanding Transactions

In CSL, the outstanding statement describes the maximum number of outstanding transactions

that can be in flight over the network at any point in time. Presently, only AXI and OCP protocols

support multiple outstanding. Increasing the number of outstanding transactions of an initiator can

dramatically improve network bandwidth capabilities, but at the cost of a significant amount of

storage within the network.

CHAIN Network Performance Closure and Verification User Guide

30 www.silistix.com (v1.0.2, 20-JAN-2009)

The CSL Compiler software uses the value of the outstanding statement to properly provision

the network and to estimate bandwidth performance. The outstanding statement does not affect

NPV traffic. Instead, the NPV test harness communicates with the adapter hardware that tracks the

number of outstanding transactions that the adapter can support. The adapter signals the NPV test

harness when it cannot yet accept another transaction.

Utilization Threshold

The CSL utilization_threshold statement provides a useful way to over provision a

network for those cases when bandwidth requirements can only be roughly approximated or are

subject to change. Setting the utilization_threshold to 80% provides an additional 20%

overhead to handle any uncertainties.

Role of the First Placement Estimator (FPE)

The First Placement Estimator (FPE) tool uses pre-placement information to provide NPV with more

realistic wire delays. Wire delays have a significant impact on the actual network latency and

bandwidth. Running NPV validation on a network after performing FPE is an important step to

guaranteed performance closure.

 CHAIN Network Performance Closure and Verification User Guide

(v1.0.2, 20-JAN-2009) www.silistix.com 31

Glossary

Term Description

FPE First Placement Estimator

NoC Network on Chip

NPV NoC Performance Validation

RTL Register Transfer Level

SoC System on Chip

Tcl Tool Command Language

CHAIN Network Performance Closure and Verification User Guide

32 www.silistix.com (v1.0.2, 20-JAN-2009)

Revision History

Revision Date Description/Revisions

1.0.2 20-JAN-2009 Updated CHAINworks version to 2.2.

1.0.1 12-DEC-2008 Minor corrections and updates.

1.0 31-OCT-2008 Initial release.

Feedback

Feedback on this Silistix document and all Silistix products is highly encouraged. If you have a

comment, correction, or suggestion to improve this document, please send us an E-mail. Please

include complete details including page numbers, section titles, or figure or table numbers where

appropriate. Thank you in advance for helping us to improve our products and services.

feedback@silistix.com

mailto:feedback@silistix.com?subject=[FEEDBACK:%20%20NPV%20Verification%20User%20Guide,%20v1.0.2]:&body=Describe%20the%20correction,%20%20comment,%20or%20suggestion%20in%20detail%20using%20page%20numbers,%20section%20titles,%20or%20figure%20or%20table%20numbers%20where%20appropriate.

	Performance Closure using Silistix NoC Performance Validation (NPV)
	Overview
	The Challenge without NPV
	NPV Simplifies Performance Closure and Network Testing

	Achieving Performance Closure using Silistix NoC Performance Validation (NPV)
	NPV Performance Sign-Off Process
	Pre-NPV Check
	Architecture Phase
	CHAINarchitect Option Settings
	CSL Compiler Command Line
	Run Simulation Script on Each NPV File

	Implementation Phase
	Freezing a Network
	CHAINarchitect Option Settings
	FPE section
	Generate Verilog section

	CSL Compiler Command Line
	First Placement Estimation (FPE)
	Generate NPV

	Run Simulation Script on Each NPV File
	Preparing for Post-Layout Phase

	Post Layout Phase
	Run Simulation Script on Each NPV File
	What If NPV Results Do Not Pass?

	Generating NPV Files in CHAINarchitect
	Before First Placement Estimator (FPE)
	After First Placement Estimator (FPE)
	Files Created
	Simulation Shell Script
	NPV Files

	Simulator Setup
	Supported Simulators
	$SILISTIX_HOME Environment Variable

	Executing an NPV Test
	NPV-Related CSL Compiler Options
	Example NPV Stimulus File
	Example Report File Output
	Summary
	Trace Report
	Example Output
	Transaction Type

	NPV Technical Details
	Basics of Performance Closure
	Data Production
	Data Consumption
	Data Transmission

	CSL Compiler Traffic Generation
	Structure of a Mode
	Iteration Count

	Importance of CSL Accuracy
	Modes
	Connection Requirements
	Data Width
	Burst Length and Addressing
	Outstanding Transactions
	Utilization Threshold
	Role of the First Placement Estimator (FPE)

	Glossary
	Revision History
	Feedback

